Hierarchically structured activated carbon for ultracapacitors

نویسندگان

  • Mok-Hwa Kim
  • Kwang-Bum Kim
  • Sun-Min Park
  • Kwang Chul Roh
چکیده

To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m(2) g(-1), exhibited an extremely high specific capacitance of 157 F g(-1) (95 F cc(-1)), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High energy and power density nanotube-enhanced ultracapacitor design, modeling, testing, and predicted performance

Today's batteries are penalized by their poor cycleability (limited to few thousand cycles), shelf life, and inability to quickly recharge (limited to tens of minutes). Commercial ultracapacitors are energy storage systems that solve these problems by offering more than one million recharges with little capacitance degradation, recharge times on the order of few seconds, and unlimited shelf lif...

متن کامل

Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites.

Hierarchically structured carbon-silica aerogel (CSA) composites were synthesized from cheap water glass precursors and granulated activated carbon via a post-synthesis surface modification with trimethylchlorosilane (TMCS) and a low-cost ambient pressure drying procedure. The resultant CSA composites possess micro/mesoporous structure and hydrophobic surface. The adsorption and desorption perf...

متن کامل

Ultracapacitors: why, how, and where is the technology

The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3 ̄5 Wh/kg with a powe...

متن کامل

Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbidederived carbon, zeolitetemplated carbon, carbon aerogels, carbon nanotubes, onionlike carbon, and graphene

Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacit...

متن کامل

Adsorption of nitrate from aqueous solution using activated carbon-supported Fe0, Fe2 (SO4)3, and FeSO4

In this laboratory scale study, impregnated almond shell activated carbon was used as adsorbent to investigate its feasibility for nitrate adsorption from aqueous medium. The effects of activated carbon dosage and contact time have been examined in batch experiments. Experimental data show that impregnated activated carbons by Fe0, Fe2 (SO4)3, and FeSO4 were more effective than virgin almond ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016